banner



Which Type Of Animals Have A Digestive System Most Similar To A Human?

Animal Diet and the Digestive Arrangement

Digestive Systems

OpenStaxCollege

[latexpage]

Learning Objectives

Past the end of this section, you will exist able to:

  • Explain the processes of digestion and assimilation
  • Compare and contrast different types of digestive systems
  • Explain the specialized functions of the organs involved in processing food in the body
  • Describe the ways in which organs work together to assimilate food and absorb nutrients

Animals obtain their nutrition from the consumption of other organisms. Depending on their diet, animals can exist classified into the following categories: found eaters (herbivores), meat eaters (carnivores), and those that eat both plants and animals (omnivores). The nutrients and macromolecules nowadays in food are not immediately accessible to the cells. There are a number of processes that modify food within the animal body in gild to brand the nutrients and organic molecules accessible for cellular role. As animals evolved in complexity of form and function, their digestive systems have as well evolved to accommodate their various dietary needs.

Herbivores, Omnivores, and Carnivores

Herbivores are animals whose primary food source is plant-based. Examples of herbivores, every bit shown in [link] include vertebrates like deer, koalas, and some bird species, as well as invertebrates such as crickets and caterpillars. These animals have evolved digestive systems capable of handling big amounts of establish material. Herbivores can be further classified into frugivores (fruit-eaters), granivores (seed eaters), nectivores (nectar feeders), and folivores (leaf eaters).

Herbivores, like this (a) mule deer and (b) monarch caterpillar, eat primarily plant material. (credit a: modification of work past Nib Ebbesen; credit b: modification of piece of work by Doug Bowman)


Left photo shows a buck with antlers. Right photo shows a black, yellow, and white striped caterpillar eating a leaf.

Carnivores are animals that consume other animals. The word carnivore is derived from Latin and literally means "meat eater." Wild cats such equally lions, shown in [link]a and tigers are examples of vertebrate carnivores, as are snakes and sharks, while invertebrate carnivores include sea stars, spiders, and ladybugs, shown in [link]b. Obligate carnivores are those that rely entirely on animal mankind to obtain their nutrients; examples of obligate carnivores are members of the cat family, such as lions and cheetahs. Facultative carnivores are those that also eat non-animate being nutrient in add-on to animal food. Note that there is no clear line that differentiates facultative carnivores from omnivores; dogs would be considered facultative carnivores.

Carnivores like the (a) panthera leo eat primarily meat. The (b) ladybug is likewise a carnivore that consumes pocket-size insects chosen aphids. (credit a: modification of piece of work by Kevin Pluck; credit b: modification of work by Jon Sullivan)


Top photo shows a lion. Bottom photo shows a ladybug.

Omnivores are animals that consume both constitute- and animal-derived food. In Latin, omnivore means to eat everything. Humans, bears (shown in [link]a), and chickens are case of vertebrate omnivores; invertebrate omnivores include cockroaches and crayfish (shown in [link]b).

Omnivores similar the (a) behave and (b) crayfish eat both plant and creature based food. (credit a: modification of work by Dave Menke; credit b: modification of work by Jon Sullivan)


Top photo shows a bear. Bottom photo shows a crayfish.

Invertebrate Digestive Systems

Animals accept evolved different types of digestive systems to aid in the digestion of the different foods they consume. The simplest instance is that of a gastrovascular cavity and is found in organisms with only ane opening for digestion. Platyhelminthes (flatworms), Ctenophora (rummage jellies), and Cnidaria (coral, jelly fish, and sea anemones) utilise this type of digestion. Gastrovascular cavities, as shown in [link]a, are typically a blind tube or cavity with simply ane opening, the "rima oris", which also serves equally an "anus". Ingested cloth enters the mouth and passes through a hollow, tubular cavity. Cells within the cavity secrete digestive enzymes that break down the food. The food particles are engulfed past the cells lining the gastrovascular cavity.

The alimentary canal, shown in [link]b, is a more avant-garde system: it consists of one tube with a mouth at i terminate and an anus at the other. Earthworms are an instance of an fauna with an alimentary canal. In one case the food is ingested through the rima oris, information technology passes through the esophagus and is stored in an organ called the ingather; then information technology passes into the gizzard where it is churned and digested. From the gizzard, the food passes through the intestine, the nutrients are absorbed, and the waste material is eliminated as feces, chosen castings, through the anus.

(a) A gastrovascular crenel has a unmarried opening through which food is ingested and waste is excreted, every bit shown in this hydra and in this jellyfish medusa. (b) An gastrointestinal tract has two openings: a mouth for ingesting nutrient, and an anus for eliminating waste, equally shown in this nematode.


Part A shows a hydra, which has a vase-shaped body with tentacles around the rim. The hydra's mouth is located between the tentacles, at the top of the vase. Next to the hydra is a jellyfish medusa, which is bell shaped with tentacles hanging down from the edge of the bell. The mouth, in the lower middle part of the body, opens into the gastrovascular cavity. Part B shows a nematode, which has a long, tube-like body that is wide at one end and tapers down to a tail at the other. The mouth is in the center of the wide end. It opens into an esophagus, then a pharynx. The pharynx empties into a long intestine, which ends at the anus a short distance before the tail.

Vertebrate Digestive Systems

Vertebrates have evolved more circuitous digestive systems to adjust to their dietary needs. Some animals have a unmarried stomach, while others have multi-chambered stomachs. Birds have developed a digestive system adapted to eating unmasticated nutrient.

Monogastric: Single-chambered Stomach

As the word monogastric suggests, this type of digestive system consists of one ("mono") stomach bedroom ("gastric"). Humans and many animals accept a monogastric digestive arrangement as illustrated in [link]ab. The process of digestion begins with the mouth and the intake of food. The teeth play an important role in masticating (chewing) or physically breaking down nutrient into smaller particles. The enzymes present in saliva also begin to chemically interruption down food. The esophagus is a long tube that connects the mouth to the stomach. Using peristalsis, or wave-like polish muscle contractions, the muscles of the esophagus push the food towards the stomach. In order to speed up the deportment of enzymes in the stomach, the stomach is an extremely acidic environment, with a pH between 1.5 and 2.5. The gastric juices, which include enzymes in the tum, act on the food particles and keep the process of digestion. Further breakdown of food takes identify in the small intestine where enzymes produced by the liver, the modest intestine, and the pancreas continue the process of digestion. The nutrients are absorbed into the blood stream across the epithelial cells lining the walls of the small intestines. The waste product fabric travels on to the big intestine where water is captivated and the drier waste cloth is compacted into feces; it is stored until information technology is excreted through the rectum.

(a) Humans and herbivores, such as the (b) rabbit, accept a monogastric digestive system. However, in the rabbit the small-scale intestine and cecum are enlarged to allow more than time to assimilate plant material. The enlarged organ provides more surface area for assimilation of nutrients. Rabbits assimilate their food twice: the first fourth dimension food passes through the digestive system, information technology collects in the cecum, and then it passes equally soft feces chosen cecotrophes. The rabbit re-ingests these cecotrophes to farther digest them.


The basic components of the human and rabbit digestive system are the same: each begins at the mouth. Food is swallowed through the esophagus and into the kidney-shaped stomach. The liver is located on top of the stomach, and the pancreas is underneath. Food passes from the stomach to the long, winding small intestine. From there it enters the wide large intestine before passing out the anus. At the junction of the small and large intestine is a pouch called the cecum. The small and large intestines are much longer in rabbits than in humans, and the cecum is much longer as well.

Avian

Birds confront special challenges when information technology comes to obtaining nutrition from food. They do not have teeth and and then their digestive system, shown in [link], must be able to procedure un-masticated food. Birds have evolved a variety of beak types that reflect the vast variety in their diet, ranging from seeds and insects to fruits and nuts. Because most birds wing, their metabolic rates are loftier in order to efficiently procedure food and keep their body weight depression. The stomach of birds has two chambers: the proventriculus, where gastric juices are produced to assimilate the food before information technology enters the stomach, and the gizzard, where the nutrient is stored, soaked, and mechanically ground. The undigested material forms food pellets that are sometimes regurgitated. Nigh of the chemic digestion and absorption happens in the intestine and the waste is excreted through the cloaca.

The avian esophagus has a pouch, called a crop, which stores nutrient. Food passes from the crop to the first of two stomachs, chosen the proventriculus, which contains digestive juices that break downwards food. From the proventriculus, the food enters the 2d tummy, called the gizzard, which grinds food. Some birds swallow stones or grit, which are stored in the gizzard, to assistance the grinding process. Birds exercise not have split openings to excrete urine and feces. Instead, uric acid from the kidneys is secreted into the large intestine and combined with waste from the digestive process. This waste is excreted through an opening called the cloaca.


Illustration shows an avian digestive system. Food is swallowed through the esophagus into the crop, which is shaped like an upside-down heart. From the bottom of the crop food enters a tubular proventriculus, which empties into a spherical gizzard. From the gizzard, food enters the small intestine, then the large intestine. Waste exits the body through the cloaca. The liver and pancreas are located between the crop and gizzard. Rather than a single cecum, birds have two caeca at the junction of the small and large intestine.

Development Connection

Avian Adaptations

Birds have a highly efficient, simplified digestive organisation. Recent fossil evidence has shown that the evolutionary divergence of birds from other state animals was characterized by streamlining and simplifying the digestive system. Unlike many other animals, birds exercise not have teeth to chew their food. In place of lips, they accept sharp pointy beaks. The horny nib, lack of jaws, and the smaller tongue of the birds can be traced back to their dinosaur ancestors. The emergence of these changes seems to coincide with the inclusion of seeds in the bird diet. Seed-eating birds accept beaks that are shaped for grabbing seeds and the ii-compartment tummy allows for delegation of tasks. Since birds need to remain calorie-free in lodge to fly, their metabolic rates are very high, which means they digest their food very quickly and need to eat often. Dissimilarity this with the ruminants, where the digestion of plant thing takes a very long time.

Ruminants

Ruminants are mainly herbivores like cows, sheep, and goats, whose entire diet consists of eating large amounts of roughage or fiber. They accept evolved digestive systems that help them digest vast amounts of cellulose. An interesting characteristic of the ruminants' oral fissure is that they practice not have upper incisor teeth. They apply their lower teeth, natural language and lips to tear and chew their nutrient. From the mouth, the food travels to the esophagus and on to the stomach.

To assistance digest the large amount of constitute material, the stomach of the ruminants is a multi-chambered organ, as illustrated in [link]. The 4 compartments of the breadbasket are chosen the rumen, reticulum, omasum, and abomasum. These chambers incorporate many microbes that intermission down cellulose and ferment ingested food. The abomasum is the "true" stomach and is the equivalent of the monogastric stomach chamber where gastric juices are secreted. The four-compartment gastric chamber provides larger space and the microbial support necessary to assimilate establish cloth in ruminants. The fermentation process produces large amounts of gas in the stomach chamber, which must be eliminated. As in other animals, the small intestine plays an important office in food absorption, and the large intestine helps in the emptying of waste.

Ruminant animals, such as goats and cows, have four stomachs. The first two stomachs, the rumen and the reticulum, incorporate prokaryotes and protists that are able to digest cellulose fiber. The ruminant regurgitates cud from the reticulum, chews it, and swallows it into a third stomach, the omasum, which removes water. The cud then passes onto the quaternary stomach, the abomasum, where it is digested by enzymes produced by the ruminant.


Illustration shows the digestive system of a goat. Food passes from the mouth, through the esophagus and into the rumen. It circulates clockwise through the rumen, then moves forward, and down into the small, pouch-shaped reticulum. From the reticulum the food, which is now cud, is regurgitated. The animal chews the cud, and then swallows it into the coiled omasum, which sits between the reticulum and the rumen. After circulating through the omasum the food enters the small intestine, then the large intestine. Waste is excreted through the anus.

Pseudo-ruminants

Some animals, such as camels and alpacas, are pseudo-ruminants. They eat a lot of institute material and roughage. Digesting plant material is not like shooting fish in a barrel because constitute cell walls contain the polymeric sugar molecule cellulose. The digestive enzymes of these animals cannot suspension down cellulose, simply microorganisms present in the digestive arrangement tin can. Therefore, the digestive system must exist able to handle big amounts of roughage and break downwards the cellulose. Pseudo-ruminants have a three-chamber stomach in the digestive arrangement. Nonetheless, their cecum—a pouched organ at the beginning of the large intestine containing many microorganisms that are necessary for the digestion of plant materials—is large and is the site where the roughage is fermented and digested. These animals practise not have a rumen only take an omasum, abomasum, and reticulum.

Parts of the Digestive System

The vertebrate digestive system is designed to facilitate the transformation of food affair into the food components that sustain organisms.

Oral Cavity

The oral cavity, or mouth, is the point of entry of food into the digestive system, illustrated in [link]. The food consumed is broken into smaller particles past mastication, the chewing action of the teeth. All mammals have teeth and can chew their food.

The extensive chemical process of digestion begins in the mouth. As food is being chewed, saliva, produced by the salivary glands, mixes with the food. Saliva is a watery substance produced in the mouths of many animals. In that location are three major glands that secrete saliva—the parotid, the submandibular, and the sublingual. Saliva contains mucus that moistens nutrient and buffers the pH of the food. Saliva as well contains immunoglobulins and lysozymes, which have antibacterial action to reduce molar decay by inhibiting growth of some bacteria. Saliva also contains an enzyme called salivary amylase that begins the process of converting starches in the food into a disaccharide called maltose. Some other enzyme chosen lipase is produced by the cells in the tongue. Lipases are a class of enzymes that can break down triglycerides. The lingual lipase begins the breakdown of fat components in the food. The chewing and wetting activity provided past the teeth and saliva set up the food into a mass called the bolus for swallowing. The tongue helps in swallowing—moving the bolus from the rima oris into the pharynx. The pharynx opens to two passageways: the trachea, which leads to the lungs, and the esophagus, which leads to the stomach. The trachea has an opening chosen the glottis, which is covered by a cartilaginous flap chosen the epiglottis. When swallowing, the epiglottis closes the glottis and food passes into the esophagus and not the trachea. This arrangement allows food to be kept out of the trachea.

Digestion of nutrient begins in the (a) oral crenel. Food is masticated by teeth and moistened past saliva secreted from the (b) salivary glands. Enzymes in the saliva begin to digest starches and fats. With the aid of the tongue, the resulting bolus is moved into the esophagus by swallowing. (credit: modification of work by the National Cancer Institute)


Illustration A shows the parts of the human oral cavity. The tongue rests in the lower part of the mouth. The flap that hangs from the back of the mouth is the uvula. The airway behind the uvula, called the pharynx, extends up to the nostrils and down to the esophagus, which begins in the neck. Illustration B shows the two salivary glands, which are located beneath the tongue, the sublingual and the submandibular. A third salivary gland, the parotid, is located behind the pharynx.

Esophagus

The esophagus is a tubular organ that connects the mouth to the tum. The chewed and softened nutrient passes through the esophagus after existence swallowed. The smoothen muscles of the esophagus undergo a series of wave like movements chosen peristalsis that push the food toward the stomach, as illustrated in [link]. The peristalsis moving ridge is unidirectional—information technology moves food from the rima oris to the tummy, and reverse motility is non possible. The peristaltic movement of the esophagus is an involuntary reflex; information technology takes place in response to the deed of swallowing.

The esophagus transfers nutrient from the mouth to the stomach through peristaltic movements.


Photo shows food moving down the esophagus, which is a muscular tube. Muscles constrict behind the food. The constriction moves down, pushing the food ahead of it, from the mouth to the stomach.

A ring-like muscle called a sphincter forms valves in the digestive system. The gastro-esophageal sphincter is located at the breadbasket end of the esophagus. In response to swallowing and the pressure exerted by the bolus of nutrient, this sphincter opens, and the bolus enters the stomach. When there is no swallowing action, this sphincter is shut and prevents the contents of the stomach from traveling upward the esophagus. Many animals have a true sphincter; however, in humans, there is no true sphincter, simply the esophagus remains closed when at that place is no swallowing activeness. Acrid reflux or "heartburn" occurs when the acidic digestive juices escape into the esophagus.

Stomach

A big office of digestion occurs in the stomach, shown in [link]. The stomach is a saclike organ that secretes gastric digestive juices. The pH in the tum is between 1.five and two.5. This highly acidic environment is required for the chemical breakdown of nutrient and the extraction of nutrients. When empty, the tum is a rather pocket-size organ; all the same, it can expand to upwards to 20 times its resting size when filled with food. This characteristic is specially useful for animals that demand to swallow when food is bachelor.

Art Connection

The human stomach has an extremely acidic environment where well-nigh of the protein gets digested. (credit: modification of work by Mariana Ruiz Villareal)


Illustration shows the human lower digestive system, which begins with the stomach, a sac that lies above the large intestine. The stomach empties into the small intestine, which is a long, highly folded tube. The beginning of the small intestine is called the duodenum, the long middle part is called the jejunum, and the end is called the ileum. The ileum empties into the large intestine on the right side of the body. Beneath the junction of the small and large intestine is a small pouch called the cecum. The appendix is at the bottom end of the cecum. The large intestine travels up the left side of the body, across the top of the small intestine, then down the right side of the body. These parts of the large intestine are called the ascending colon, the transverse colon and the descending colon, respectively. The large intestine empties into the rectum, which is connected to the anus. The pancreas is sandwiched between the stomach and large intestine. The liver is a triangular organ that sits above and slightly to the right of the stomach. The gallbladder is a small bulb between the liver and stomach.

Which of the following statements near the digestive system is false?

  1. Chyme is a mixture of food and digestive juices that is produced in the stomach.
  2. Food enters the large intestine before the minor intestine.
  3. In the small intestine, chyme mixes with bile, which emulsifies fats.
  4. The stomach is separated from the small-scale intestine by the pyloric sphincter.

<!–<para>B–>

The stomach is likewise the major site for protein digestion in animals other than ruminants. Poly peptide digestion is mediated by an enzyme called pepsin in the stomach chamber. Pepsin is secreted by the master cells in the tummy in an inactive form called pepsinogen. Pepsin breaks peptide bonds and cleaves proteins into smaller polypeptides; it likewise helps activate more pepsinogen, starting a positive feedback mechanism that generates more pepsin. Another cell type—parietal cells—secrete hydrogen and chloride ions, which combine in the lumen to grade hydrochloric acid, the primary acidic component of the stomach juices. Hydrochloric acid helps to convert the inactive pepsinogen to pepsin. The highly acidic environment also kills many microorganisms in the food and, combined with the action of the enzyme pepsin, results in the hydrolysis of protein in the food. Chemic digestion is facilitated by the churning action of the stomach. Contraction and relaxation of smooth muscles mixes the stomach contents about every xx minutes. The partially digested food and gastric juice mixture is chosen chyme. Chyme passes from the stomach to the pocket-size intestine. Further poly peptide digestion takes identify in the modest intestine. Gastric emptying occurs within two to six hours afterwards a meal. Just a small amount of chyme is released into the pocket-size intestine at a time. The movement of chyme from the stomach into the minor intestine is regulated by the pyloric sphincter.

When digesting protein and some fats, the stomach lining must exist protected from getting digested by pepsin. In that location are ii points to consider when describing how the stomach lining is protected. First, equally previously mentioned, the enzyme pepsin is synthesized in the inactive form. This protects the chief cells, because pepsinogen does not have the same enzyme functionality of pepsin. Second, the stomach has a thick mucus lining that protects the underlying tissue from the action of the digestive juices. When this fungus lining is ruptured, ulcers can course in the tum. Ulcers are open wounds in or on an organ caused by bacteria (Helicobacter pylori) when the mucus lining is ruptured and fails to reform.

Small Intestine

Chyme moves from the stomach to the pocket-sized intestine. The minor intestine is the organ where the digestion of protein, fats, and carbohydrates is completed. The small-scale intestine is a long tube-like organ with a highly folded surface containing finger-like projections called the villi. The upmost surface of each villus has many microscopic projections called microvilli. These structures, illustrated in [link], are lined with epithelial cells on the luminal side and permit for the nutrients to be absorbed from the digested food and captivated into the claret stream on the other side. The villi and microvilli, with their many folds, increase the surface area of the intestine and increase absorption efficiency of the nutrients. Absorbed nutrients in the blood are carried into the hepatic portal vein, which leads to the liver. There, the liver regulates the distribution of nutrients to the rest of the body and removes toxic substances, including drugs, alcohol, and some pathogens.

Fine art Connectedness

Villi are folds on the small intestine lining that increment the surface area to facilitate the absorption of nutrients.


Illustration shows a cross section of the small intestine, the lumen, or inside of which has many fingerlike projections called villi. Muscle layers wrap around the outside of the intestine, and blood vessels interact with the muscle layer. A blowup shows that capillaries and lymphatic vessels travel up inside the villi. The surface of each villus is covered with hairline microvilli.

Which of the following statements about the small intestine is simulated?

  1. Absorptive cells that line the small intestine take microvilli, small projections that increment surface area and assist in the absorption of food.
  2. The within of the small intestine has many folds, chosen villi.
  3. Microvilli are lined with blood vessels as well as lymphatic vessels.
  4. The inside of the small intestine is chosen the lumen.

<!–<para>C–>

The human small intestine is over 6m long and is divided into iii parts: the duodenum, the jejunum, and the ileum. The "C-shaped," fixed function of the small-scale intestine is called the duodenum and is shown in [link]. The duodenum is separated from the tummy by the pyloric sphincter which opens to allow chyme to movement from the stomach to the duodenum. In the duodenum, chyme is mixed with pancreatic juices in an alkali metal solution rich in bicarbonate that neutralizes the acidity of chyme and acts as a buffer. Pancreatic juices also contain several digestive enzymes. Digestive juices from the pancreas, liver, and gallbladder, as well every bit from gland cells of the intestinal wall itself, enter the duodenum. Bile is produced in the liver and stored and full-bodied in the gallbladder. Bile contains bile salts which emulsify lipids while the pancreas produces enzymes that catabolize starches, disaccharides, proteins, and fats. These digestive juices intermission down the nutrient particles in the chyme into glucose, triglycerides, and amino acids. Some chemical digestion of food takes identify in the duodenum. Assimilation of fatty acids besides takes place in the duodenum.

The 2d part of the small intestine is called the jejunum, shown in [link]. Here, hydrolysis of nutrients is continued while most of the carbohydrates and amino acids are absorbed through the intestinal lining. The bulk of chemical digestion and nutrient absorption occurs in the jejunum.

The ileum, as well illustrated in [link] is the final part of the small intestine and hither the bile salts and vitamins are captivated into blood stream. The undigested food is sent to the colon from the ileum via peristaltic movements of the musculus. The ileum ends and the big intestine begins at the ileocecal valve. The vermiform, "worm-similar," appendix is located at the ileocecal valve. The appendix of humans secretes no enzymes and has an insignificant role in amnesty.

Large Intestine

The large intestine, illustrated in [link], reabsorbs the water from the undigested nutrient material and processes the waste cloth. The human big intestine is much smaller in length compared to the small-scale intestine only larger in diameter. It has three parts: the cecum, the colon, and the rectum. The cecum joins the ileum to the colon and is the receiving pouch for the waste matter affair. The colon is domicile to many leaner or "abdominal flora" that help in the digestive processes. The colon can be divided into iv regions, the ascending colon, the transverse colon, the descending colon and the sigmoid colon. The main functions of the colon are to excerpt the h2o and mineral salts from undigested food, and to store waste product. Carnivorous mammals take a shorter large intestine compared to herbivorous mammals due to their diet.

The large intestine reabsorbs water from undigested nutrient and stores waste material material until it is eliminated.


Illustration shows the structure of the large intestine, which begins with the ascending colon. Below the ascending colon is the cecum. The vermiform appendix is a small projection at the bottom of the cecum. The ascending colon travels up the right side of the body, then turns into the transverse colon. On the left side of the body the large intestine turns again, into the descending colon. At the bottom, the descending colon curves up; this part of the intestine is called the sigmoid colon. The sigmoid colon empties into the rectum. The rectum travels straight down, to the anus.

Rectum and Anus

The rectum is the terminal end of the large intestine, every bit shown in [link]. The primary function of the rectum is to store the carrion until defecation. The feces are propelled using peristaltic movements during elimination. The anus is an opening at the far-end of the digestive tract and is the exit point for the waste matter textile. Two sphincters between the rectum and anus control emptying: the inner sphincter is involuntary and the outer sphincter is voluntary.

Accessory Organs

The organs discussed above are the organs of the digestive tract through which food passes. Accessory organs are organs that add secretions (enzymes) that catabolize food into nutrients. Accessory organs include salivary glands, the liver, the pancreas, and the gallbladder. The liver, pancreas, and gallbladder are regulated by hormones in response to the food consumed.

The liver is the largest internal organ in humans and it plays a very important role in digestion of fats and detoxifying blood. The liver produces bile, a digestive juice that is required for the breakdown of fatty components of the food in the duodenum. The liver as well processes the vitamins and fats and synthesizes many plasma proteins.

The pancreas is another important gland that secretes digestive juices. The chyme produced from the stomach is highly acidic in nature; the pancreatic juices contain high levels of bicarbonate, an alkali that neutralizes the acidic chyme. Additionally, the pancreatic juices comprise a large variety of enzymes that are required for the digestion of protein and carbohydrates.

The gallbladder is a small-scale organ that aids the liver past storing bile and concentrating bile salts. When chyme containing fatty acids enters the duodenum, the bile is secreted from the gallbladder into the duodenum.

Section Summary

Different animals have evolved dissimilar types of digestive systems specialized to meet their dietary needs. Humans and many other animals have monogastric digestive systems with a single-chambered stomach. Birds have evolved a digestive organization that includes a gizzard where the food is crushed into smaller pieces. This compensates for their inability to masticate. Ruminants that swallow large amounts of plant textile have a multi-chambered tum that digests roughage. Pseudo-ruminants have similar digestive processes equally ruminants but practise not have the four-compartment tummy. Processing food involves ingestion (eating), digestion (mechanical and enzymatic breakdown of big molecules), absorption (cellular uptake of nutrients), and elimination (removal of undigested waste as feces).

Many organs work together to assimilate food and absorb nutrients. The mouth is the point of ingestion and the location where both mechanical and chemic breakup of food begins. Saliva contains an enzyme called amylase that breaks down carbohydrates. The food bolus travels through the esophagus by peristaltic movements to the stomach. The stomach has an extremely acidic environment. An enzyme called pepsin digests poly peptide in the tum. Further digestion and absorption take place in the small intestine. The large intestine reabsorbs water from the undigested nutrient and stores waste until emptying.

Art Connections

[link] Which of the following statements about the digestive organisation is simulated?

  1. Chyme is a mixture of food and digestive juices that is produced in the stomach.
  2. Food enters the large intestine before the modest intestine.
  3. In the small intestine, chyme mixes with bile, which emulsifies fats.
  4. The stomach is separated from the small intestine by the pyloric sphincter.

[link] Which of the post-obit statements almost the pocket-size intestine is false?

  1. Absorptive cells that line the pocket-sized intestine have microvilli, small projections that increment surface area and aid in the assimilation of nutrient.
  2. The inside of the small-scale intestine has many folds, called villi.
  3. Microvilli are lined with blood vessels likewise as lymphatic vessels.
  4. The inside of the pocket-size intestine is called the lumen.

Review Questions

Which of the following is a pseudo-ruminant?

  1. moo-cow
  2. pig
  3. crow
  4. equus caballus

Which of the following statements is untrue?

  1. Roughage takes a long fourth dimension to digest.
  2. Birds eat big quantities at one time and then that they can wing long distances.
  3. Cows do not accept upper teeth.
  4. In pseudo-ruminants, roughage is digested in the cecum.

The acidic nature of chyme is neutralized by ________.

  1. potassium hydroxide
  2. sodium hydroxide
  3. bicarbonates
  4. vinegar

The digestive juices from the liver are delivered to the ________.

  1. tum
  2. liver
  3. duodenum
  4. colon

Free Response

How does the polygastric digestive system assist in digesting roughage?

Animals with a polygastric digestive system have a multi-chambered breadbasket. The four compartments of the breadbasket are called the rumen, reticulum, omasum, and abomasum. These chambers contain many microbes that intermission down the cellulose and ferment the ingested food. The abomasum is the "true" breadbasket and is the equivalent of a monogastric stomach bedroom where gastric juices are secreted. The iv-compartment gastric chamber provides larger space and the microbial support necessary for ruminants to digest plant fabric.

How do birds assimilate their food in the absence of teeth?

Birds have a stomach bedchamber called a gizzard. Here, the food is stored, soaked, and footing into effectively particles, oftentimes using pebbles. Once this process is consummate, the digestive juices accept over in the proventriculus and proceed the digestive process.

What is the role of the accessory organs in digestion?

Accompaniment organs play an important role in producing and delivering digestive juices to the intestine during digestion and absorption. Specifically, the salivary glands, liver, pancreas, and gallbladder play important roles. Malfunction of any of these organs tin can lead to disease states.

Explicate how the villi and microvilli assistance in absorption.

The villi and microvilli are folds on the surface of the small intestine. These folds increment the surface area of the intestine and provide more than surface area for the assimilation of nutrients.

Glossary

gastrointestinal tract
tubular digestive system with a rima oris and anus
anus
exit point for waste material material
bile
digestive juice produced by the liver; important for digestion of lipids
bolus
mass of food resulting from chewing action and wetting by saliva
carnivore
brute that consumes animal flesh
chyme
mixture of partially digested food and stomach juices
duodenum
showtime office of the small intestine where a large part of digestion of carbohydrates and fats occurs
esophagus
tubular organ that connects the mouth to the breadbasket
gallbladder
organ that stores and concentrates bile
gastrovascular cavity
digestive system consisting of a single opening
gizzard
muscular organ that grinds nutrient
herbivore
fauna that consumes strictly plant nutrition
ileum
final office of the modest intestine; connects the small intestine to the large intestine; important for assimilation of B-12
jejunum
2d part of the small intestine
large intestine
digestive organisation organ that reabsorbs water from undigested material and processes waste thing
lipase
enzyme that chemically breaks down lipids
liver
organ that produces bile for digestion and processes vitamins and lipids
monogastric
digestive system that consists of a single-chambered breadbasket
omnivore
animal that consumes both plants and animals
pancreas
gland that secretes digestive juices
pepsin
enzyme plant in the tum whose primary function is poly peptide digestion
pepsinogen
inactive form of pepsin
peristalsis
wave-like movements of muscle tissue
proventriculus
glandular part of a bird's stomach
rectum
expanse of the body where feces is stored until elimination
roughage
component of nutrient that is low in free energy and high in fiber
ruminant
brute with a stomach divided into four compartments
salivary amylase
enzyme constitute in saliva, which converts carbohydrates to maltose
pocket-sized intestine
organ where digestion of poly peptide, fats, and carbohydrates is completed
sphincter
ring of muscle that controls movement of materials throughout the digestive tract
stomach
saclike organ containing acidic digestive juices
villi
folds on the inner surface of the small intestine whose role is to increase absorption expanse

Source: https://pressbooks-dev.oer.hawaii.edu/biology/chapter/digestive-systems/

Posted by: araizatheasked.blogspot.com

0 Response to "Which Type Of Animals Have A Digestive System Most Similar To A Human?"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel